Part Number Hot Search : 
2SD78 336ME0 NSS4020 BS123 CPD109R MRF6P AO4405 DTB143
Product Description
Full Text Search
 

To Download FDS6993 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDS6993
June 2003
FDS6993
Dual P-Channel PowerTrench(R) MOSFET
General Description These P-Channel MOSFETs are made using FSC's PowerTrench(R) technology. They are packaged in a single SO-8 which is designed to allow two MOSFETs to operate independenly, each with it's own heat sink. The combination of silicon and package technologies results in minimum board space and cost. Features
* Q1: P-Channel -4.3A, -30V RDS(on) = 55m @ VGS = -10V * Q2: RDS(on) = 85m @ VGS = -4.5V P-Channel
-6.8A, -12V RDS(on) = 17m @ VGS = -4.5V RDS(on) = 24m @ VGS = -2.5V * RDS(on) = 30m @ VGS = -1.8V High power and handling capability in a widely used surface mount package
D1 D
D1 D
DD2 D2 D
5 6 7
G2 S2 G
Q2
4 3 2
Q1
SO-8
Pin 1 SO-8
G1 S1 S
S
8
1
S
Absolute Maximum Ratings
Symbol
VDSS VGSS ID PD Drain-Source Voltage Gate-Source Voltage Drain Current
TA = 25C unless otherwise noted
Parameter
Q1
-30
(Note 1a)
Q2
-12 8 -6.8 -20 2 1.6 1 0.9 -55 to +150
Units
V V A W
- Continuous - Pulsed Power Dissipation for Dual Operation Power Dissipation for Single Operation
25 -4.3 -20
(Note 1a) (Note 1b) (Note 1c)
TJ, TSTG
Operating and Storage Junction Temperature Range
C
Thermal Characteristics
RJA RJC Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
(Note 1a) (Note 1)
78 40
C/W C/W
Package Marking and Ordering Information
Device Marking FDS6993 Device FDS6993 Reel Size 13" Tape width 12mm Quantity 2500 units
(c)2003 Fairchild Semiconductor Corporation
FDS6993 Rev C (W)
FDS6993
Electrical Characteristics
Symbol
BVDSS BVDSS TJ IDSS IGSS
TA = 25C unless otherwise noted
Parameter
Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage
(Note 2)
Test Conditions
VGS = 0 V, ID = -250 A VGS = 0 V, ID = -250 A ID = -250 A, Referenced to 25C ID = -250 A, Referenced to 25C VDS = -24 V, VGS = 0 V VDS = -10 V, VGS = 0 V VGS = 25 V, VDS = 0 V VGS = 8 V, VDS = 0 V VDS = VGS, ID = -250 A VDS = VGS, ID = -250 A ID = -250 A, Referenced to 25C ID = -250 A, Referenced to 25C VGS = -10 V, ID = -4.3 A VGS = -10 V, ID = -4.3 A, TJ = 125C VGS = -4.5 V, ID = -3.4 A VGS = -4.5 V, ID = -6.8 A VGS = -4.5 V, ID = -6.8 A, TJ = 125C VGS = -2.5 V, ID = -5.9 A VGS = -1.8 V, ID = -5.0 VGS = -10 V, VDS = -5 V VGS = -4.5 V, VDS = -5 V VDS = -10 V, ID = -7 A VDS = -5 V, ID = -5 A Q1 VDS = -15 V, VGS = 0 V, f = 1.0 MHz
Type Min Typ Max Units
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 -30 -12 -21 -0.9 -1 -1 100 100 -1 -0.4 -1.8 -0.5 4 3 48 64 74 11 14 14 19 -20 -20 9 34 530 2980 140 1230 70 790 -3 -1.5 V mV/C A nA
Off Characteristics
On Characteristics
VGS(th) VGS(th) TJ RDS(on)
Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance
V mV/C
55 80 85 17 24 24 30
m
Q2
ID(on) gFS
On-State Drain Current Forward Transconductance
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
A S
Dynamic Characteristics
Ciss Coss Crss Input Capacitance Output Capacitance Q2 Reverse Transfer Capacitance VDS = -6 V, VGS = 0 V, f = 1.0 MHz pF pF pF
FDS6993 Rev C (W)
FDS6993
Electrical Characteristics
Symbol Parameter
(continued)
TA = 25C unless otherwise noted
Test Conditions
(Note 2)
Type Min
Typ
Max Units
Switching Characteristics
td(on) tr td(off) tf Qg Qgs Qgd Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge
Q1 VDD = -15 V, ID = -1 A, VGS = -10V, RGEN = 6 Q2 VDD = -6 V, ID = -1 A, VGS = -4.5V, RGEN = 6 Q1 VDS = -15 V, ID = -4.3 A, VGS = -5 V Q2 VDS = -6 V, ID = -6.8 A, VGS = -5 V
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
10 19 14 20 14 134 9 121 5.5 32 1.8 4.0 2.2 8.0
19 34 26 35 24 215 18 193 7.7 45
ns ns ns ns nC nC nC
Drain-Source Diode Characteristics and Maximum Ratings
IS VSD Maximum Continuous Drain-Source Diode Forward Current Drain-Source Diode Forward VGS = 0 V, IS = -1.3 A Voltage VGS = 0 V, IS = -1.3 A
(Note 2) (Note 2)
-0.8 -0.6
-1.3 -1.3 -1.2 -1.2
A V
Notes: 1. RJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RJC is guaranteed by design while RCA is determined by the user's board design.
a) 78/W when mounted on a 0.5 in2 pad of 2 oz copper
b) 125/W when mounted on a .02 in2 pad of 2 oz copper
c) 135/W when mounted on a minimum pad.
Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300s, Duty Cycle < 2.0%
FDS6993 Rev C (W)
FDS6993
Typical Characteristics: Q1
20
2
VGS = -10V
16 -ID, DRAIN CURRENT (A)
-4.5V V
RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE
-5.0V V
VGS=-4.0V
1.8
-6.0V V
12
1.6
-4.5V -5.0V -6.0V
-4.0V
1.4
8
-3.5V
4
1.2
-7.0V -8.0V -10V
-3.0V
0 0 1 2 3 4 -VDS, DRAIN TO SOURCE VOLTAGE (V) 5
1
0.8 0 4 8 12 -ID, DRAIN CURRENT (A) 16 20
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.
0.2 RDS(ON), ON-RESISTANCE (OHM)
1.4 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE ID = -4.3A VGS = -10V 1.3
ID = -2.15A 0.15
1.2
1.1
0.1
TA = 125oC
1
0.05
TA = 25oC
0.9
0.8 -50 -25 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (oC) 125 150
0 2.5 5 7.5 -VGS, GATE TO SOURCE VOLTAGE (V) 10
Figure 3. On-Resistance Variation with Temperature.
15
-IS, REVERSE DRAIN CURRENT (A)
Figure 4. On-Resistance Variation with Gate-to-Source Voltage.
100
VDS = -5V -ID, DRAIN CURRENT (A) 12
TA = -55oC 125 C
o
VGS =0V
10
9
25 C
o
1
TA = 125oC 25oC -55oC
0.1
6
0.01
3
0.001
0 2 2.5 3 3.5 4 -VGS, GATE TO SOURCE VOLTAGE (V) 4.5
0.0001 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -VSD, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics.
Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.
FDS6993 Rev C (W)
FDS6993
Typical Characteristics: Q1
10 -VGS, GATE-SOURCE VOLTAGE (V)
700
ID = -4.3A
600
VDS = -10V
8
f = 1 MHz VGS = 0 V
CAPACITANCE (pF)
-20V
6
500 Ciss 400 300 Coss 200 100
-15V
4
2
Crss
0 0 2 4 6 8 Qg, GATE CHARGE (nC) 10 12
0 0 5 10 15 20 25 -VDS, DRAIN TO SOURCE VOLTAGE (V) 30
Figure 7. Gate Charge Characteristics.
100 P(pk), PEAK TRANSIENT POWER (W) RDS(ON) LIMIT 100s -ID, DRAIN CURRENT (A) 10 1ms 10ms 100ms 1s 10s DC 0.1 VGS = -10V SINGLE PULSE RJA = 135oC/W TA = 25oC 0.01 0.1 1 10 -VDS, DRAIN-SOURCE VOLTAGE (V) 100 50
Figure 8. Capacitance Characteristics.
40
SINGLE PULSE RJA = 135C/W TA = 25C
30
1
20
10
0 0.001
0.01
0.1
1 t1, TIME (sec)
10
100
1000
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power Dissipation.
r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE
1
D = 0.5 0.2
RJA(t) = r(t) * RJA RJA = 135 C/W P(pk) t1 t2
SINGLE PULSE
o
0.1
0.1 0.05 0.02
0.01
0.01
TJ - TA = P * RJA(t) Duty Cycle, D = t1 / t2
0.001 0.0001
0.001
0.01
0.1
t1, TIME (sec)
1
10
100
1000
Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.
FDS6993 Rev C (W)
FDS6993
Typical Characteristics: Q2
20 VGS = -4.5V 16 -3.5V 12 -2.5V -2.0V
RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE
2.2 2 1.8 1.6
VGS = - 2.0V
-ID, DRAIN CURRENT (A)
-1.5V
-2.5V
1.4 1.2 1 0.8
8
-3.0V -3.5V -4.5V -6.0V -10.0V
4
0 0 0.5 1 1.5 -VDS, DRAIN TO SOURCE VOLTAGE (V) 2
0
4
8 12 -ID, DRAIN CURRENT (A)
16
20
Figure 12. On-Region Characteristics.
Figure 13. On-Resistance Variation with Drain Current and Gate Voltage.
0.045
1.4 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE
RDS(ON), ON-RESISTANCE (OHM)
1.3
ID = -6.8A VGS = - 4.5V
ID = -3.4A
0.035
1.2
1.1
0.025
TA = 125oC
1
0.015
TA = 25oC
0.9
0.8 -50 -25 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (oC) 125 150
0.005 1 2 3 4 -VGS, GATE TO SOURCE VOLTAGE (V) 5
Figure 14. On-Resistance Variation with Temperature.
20
Figure 15. On-Resistance Variation with Gate-to-Source Voltage.
10 -IS, REVERSE DRAIN CURRENT (A)
VDS = -5V -ID, DRAIN CURRENT (A) 16
VGS = 0V
1
TA = 125oC
12 TA = 125oC 8 -55 C
o
0.1
25oC
0.01
-55oC
4 25 C 0 0 0.4 0.8 1.2 1.6 -VGS, GATE TO SOURCE VOLTAGE (V) 2
o
0.001
0.0001 0 0.2 0.4 0.6 0.8 -VSD, BODY DIODE FORWARD VOLTAGE (V) 1
Figure 16. Transfer Characteristics.
Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.
FDS6993 Rev C (W)
FDS6993
Typical Characteristics: Q2
10
4200
ID = -6.8A
-VGS, GATE-SOURCE VOLTAGE (V) 8
f = 1 MHz VGS = 0 V
3500 CAPACITANCE (pF)
VDS = -4V
6
2800
Ciss
-8V
4
2100
Coss
1400
-6V
2
700
Crss
0 0 10 20 30 40 Qg, GATE CHARGE (nC) 50 60 70
0 0 3 6 9 -VDS, DRAIN TO SOURCE VOLTAGE (V) 12
Figure 18. Gate Charge Characteristics.
100
P(pk), PEAK TRANSIENT POWER (W)
Figure 19. Capacitance Characteristics.
50
RDS(ON) LIMIT 100s -ID, DRAIN CURRENT (A) 10 100ms 1s 10s 1 DC 1ms 10ms
40
SINGLE PULSE RJA = 135C/W TA = 25C
30
20
0.1
VGS = -4.5V SINGLE PULSE RJA = 135oC/W TA = 25oC
10
0.01 0.1 1 10 -VDS, DRAIN-SOURCE VOLTAGE (V) 100
0 0.001
0.01
0.1
1 t1, TIME (sec)
10
100
1000
Figure 20. Maximum Safe Operating Area.
Figure 21. Single Pulse Maximum Power Dissipation.
r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE
1
D = 0.5
RJA(t) = r(t) * RJA
0.2
RJA = 135 C/W P(pk) t1 t2 TJ - TA = P * RJA(t) Duty Cycle, D = t1 / t2
o
0.1
0.1 0.05 0.02 0.01
0.01
SINGLE PULSE
0.001 0.0001
0.001
0.01
0.1 t1, TIME (sec)
1
10
100
1000
Figure 22. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.
FDS6993 Rev C (W)
FDS6993 Rev C (W)


▲Up To Search▲   

 
Price & Availability of FDS6993

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X